Package: CEEMDANML 0.1.0
CEEMDANML: CEEMDAN Decomposition Based Hybrid Machine Learning Models
Noise in the time-series data significantly affects the accuracy of the Machine Learning (ML) models (Artificial Neural Network and Support Vector Regression are considered here). Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) decomposes the time series data into sub-series and help to improve the model performance. The models can achieve higher prediction accuracy than the traditional ML models. Two models have been provided here for time series forecasting. More information may be obtained from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
Authors:
CEEMDANML_0.1.0.tar.gz
CEEMDANML_0.1.0.zip(r-4.5)CEEMDANML_0.1.0.zip(r-4.4)CEEMDANML_0.1.0.zip(r-4.3)
CEEMDANML_0.1.0.tgz(r-4.4-any)CEEMDANML_0.1.0.tgz(r-4.3-any)
CEEMDANML_0.1.0.tar.gz(r-4.5-noble)CEEMDANML_0.1.0.tar.gz(r-4.4-noble)
CEEMDANML_0.1.0.tgz(r-4.4-emscripten)CEEMDANML_0.1.0.tgz(r-4.3-emscripten)
CEEMDANML.pdf |CEEMDANML.html✨
CEEMDANML/json (API)
# Install 'CEEMDANML' in R: |
install.packages('CEEMDANML', repos = c('https://sandipgarai.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:6ca7dfa85a. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | OK | Oct 29 2024 |
R-4.5-linux | OK | Oct 29 2024 |
R-4.4-win | OK | Oct 29 2024 |
R-4.4-mac | OK | Oct 29 2024 |
R-4.3-win | OK | Oct 29 2024 |
R-4.3-mac | OK | Oct 29 2024 |
Dependencies:aTSAcaretclasscliclockcodetoolscolorspacecpp11curlcvardata.tableDerivdiagramdigestdplyre1071earthfansifarverfastICAfBasicsfGarchFinTSforeachforecastFormulafracdifffuturefuture.applygbutilsgenericsggplot2globalsgluegowergssgtablehardhatipredisobanditeratorsjsonliteKernSmoothlabelinglatticelavalifecyclelistenvlmtestLSTSlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellneuralnetnlmennetnumDerivparallellypatchworkpillarpkgconfigplotmoplotrixplyrpROCprodlimprogressrproxypsopurrrquadprogquantmodR6rbibutilsRColorBrewerRcppRcppArmadilloRdpackrecipesreshape2rlangRlibeemdrpartscalesshapespatialSQUAREMstablediststringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetimeSeriestseriesTTRtzdburcautf8vctrsviridisLitewithrxtszoo