Package: WaveletML 0.1.0

WaveletML: Wavelet Decomposition Based Hybrid Machine Learning Models

Wavelet decomposes a series into multiple sub series called detailed and smooth components which helps to capture volatility at multi resolution level by various models. Two hybrid Machine Learning (ML) models (Artificial Neural Network and Support Vector Regression have been used) have been developed in combination with stochastic models, feature selection, and optimization algorithms for prediction of the data. The algorithms have been developed following Paul and Garai (2021) <doi:10.1007/s00500-021-06087-4>.

Authors:Mr. Sandip Garai [aut, cre], Dr. Ranjit Kumar Paul [aut], Dr. Md Yeasin [aut]

WaveletML_0.1.0.tar.gz
WaveletML_0.1.0.zip(r-4.5)WaveletML_0.1.0.zip(r-4.4)WaveletML_0.1.0.zip(r-4.3)
WaveletML_0.1.0.tgz(r-4.5-any)WaveletML_0.1.0.tgz(r-4.4-any)WaveletML_0.1.0.tgz(r-4.3-any)
WaveletML_0.1.0.tar.gz(r-4.5-noble)WaveletML_0.1.0.tar.gz(r-4.4-noble)
WaveletML_0.1.0.tgz(r-4.4-emscripten)WaveletML_0.1.0.tgz(r-4.3-emscripten)
WaveletML.pdf |WaveletML.html
WaveletML/json (API)

# Install 'WaveletML' in R:
install.packages('WaveletML', repos = c('https://sandipgarai.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.48 score 1 packages 141 downloads 2 exports 112 dependencies

Last updated 2 years agofrom:639b495984. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 30 2025
R-4.5-winOKMar 30 2025
R-4.5-macOKMar 30 2025
R-4.5-linuxOKMar 30 2025
R-4.4-winOKMar 30 2025
R-4.4-macOKMar 30 2025
R-4.4-linuxOKMar 30 2025
R-4.3-winOKMar 30 2025
R-4.3-macOKMar 30 2025

Exports:warigaanwarigas

Dependencies:aTSAcaretclasscliclockcodetoolscolorspacecpp11curlcvardata.tableDerivdiagramdigestdplyre1071earthfansifarverfastICAfBasicsfGarchFinTSforeachforecastFormulafracdifffuturefuture.applygbutilsgenericsggplot2globalsgluegowergssgtablehardhatipredisobanditeratorsjsonliteKernSmoothlabelinglatticelavalifecyclelistenvlmtestLSTSlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellneuralnetnlmennetnumDerivparallellypatchworkpillarpkgconfigplotmoplotrixplyrpROCprodlimprogressrproxypsopurrrquadprogquantmodR6rbibutilsRColorBrewerRcppRcppArmadilloRdpackrecipesreshape2rlangrpartscalesshapesparsevctrsspatialSQUAREMstablediststringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetimeSeriestseriesTTRtzdburcautf8vctrsviridisLitewaveletswithrxtszoo