Package: WaveletML 0.1.0

WaveletML: Wavelet Decomposition Based Hybrid Machine Learning Models

Wavelet decomposes a series into multiple sub series called detailed and smooth components which helps to capture volatility at multi resolution level by various models. Two hybrid Machine Learning (ML) models (Artificial Neural Network and Support Vector Regression have been used) have been developed in combination with stochastic models, feature selection, and optimization algorithms for prediction of the data. The algorithms have been developed following Paul and Garai (2021) <doi:10.1007/s00500-021-06087-4>.

Authors:Mr. Sandip Garai [aut, cre], Dr. Ranjit Kumar Paul [aut], Dr. Md Yeasin [aut]

WaveletML_0.1.0.tar.gz
WaveletML_0.1.0.zip(r-4.5)WaveletML_0.1.0.zip(r-4.4)WaveletML_0.1.0.zip(r-4.3)
WaveletML_0.1.0.tgz(r-4.4-any)WaveletML_0.1.0.tgz(r-4.3-any)
WaveletML_0.1.0.tar.gz(r-4.5-noble)WaveletML_0.1.0.tar.gz(r-4.4-noble)
WaveletML_0.1.0.tgz(r-4.4-emscripten)WaveletML_0.1.0.tgz(r-4.3-emscripten)
WaveletML.pdf |WaveletML.html
WaveletML/json (API)

# Install 'WaveletML' in R:
install.packages('WaveletML', repos = c('https://sandipgarai.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.48 score 1 packages 128 downloads 2 exports 111 dependencies

Last updated 2 years agofrom:639b495984. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:warigaanwarigas

Dependencies:aTSAcaretclasscliclockcodetoolscolorspacecpp11curlcvardata.tableDerivdiagramdigestdplyre1071earthfansifarverfastICAfBasicsfGarchFinTSforeachforecastFormulafracdifffuturefuture.applygbutilsgenericsggplot2globalsgluegowergssgtablehardhatipredisobanditeratorsjsonliteKernSmoothlabelinglatticelavalifecyclelistenvlmtestLSTSlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellneuralnetnlmennetnumDerivparallellypatchworkpillarpkgconfigplotmoplotrixplyrpROCprodlimprogressrproxypsopurrrquadprogquantmodR6rbibutilsRColorBrewerRcppRcppArmadilloRdpackrecipesreshape2rlangrpartscalesshapespatialSQUAREMstablediststringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetimeSeriestseriesTTRtzdburcautf8vctrsviridisLitewaveletswithrxtszoo