Package: tsLSTMx 0.1.0
tsLSTMx: Predict Time Series Using LSTM Model Including Exogenous Variable to Denote Zero Values
It is a versatile tool for predicting time series data using Long Short-Term Memory (LSTM) models. It is specifically designed to handle time series with an exogenous variable, allowing users to denote whether data was available for a particular period or not. The package encompasses various functionalities, including hyperparameter tuning, custom loss function support, model evaluation, and one-step-ahead forecasting. With an emphasis on ease of use and flexibility, it empowers users to explore, evaluate, and deploy LSTM models for accurate time series predictions and forecasting in diverse applications. More details can be found in Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
Authors:
tsLSTMx_0.1.0.tar.gz
tsLSTMx_0.1.0.zip(r-4.5)tsLSTMx_0.1.0.zip(r-4.4)tsLSTMx_0.1.0.zip(r-4.3)
tsLSTMx_0.1.0.tgz(r-4.4-any)tsLSTMx_0.1.0.tgz(r-4.3-any)
tsLSTMx_0.1.0.tar.gz(r-4.5-noble)tsLSTMx_0.1.0.tar.gz(r-4.4-noble)
tsLSTMx_0.1.0.tgz(r-4.4-emscripten)tsLSTMx_0.1.0.tgz(r-4.3-emscripten)
tsLSTMx.pdf |tsLSTMx.html✨
tsLSTMx/json (API)
# Install 'tsLSTMx' in R: |
install.packages('tsLSTMx', repos = c('https://sandipgarai.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 11 months agofrom:9603efaaee. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win | OK | Nov 08 2024 |
R-4.5-linux | OK | Nov 08 2024 |
R-4.4-win | OK | Nov 08 2024 |
R-4.4-mac | OK | Nov 08 2024 |
R-4.3-win | OK | Nov 08 2024 |
R-4.3-mac | OK | Nov 08 2024 |
Exports:best_model_on_validationcheck_and_format_datacompare_predicted_vs_actualconvert_to_numeric_matricesconvert_to_tensorsdefine_early_stoppingembed_columnsforecast_best_modelinitialize_tensorflowpredict_y_valuesreshape_for_lstmsplit_datats_lstm_x_tuning
Dependencies:AllMetricsbackportsbase64enccliconfiggenericsglueherejsonlitekeraslatticelifecyclemagrittrMatrixpngprocessxpsR6rappdirsRcppRcppTOMLreticulaterlangrprojrootrstudioapitensorflowtfautographtfrunstidyselectvctrswhiskerwithryamlzeallot
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Evaluate the best LSTM model on the validation set | best_model_on_validation |
Check and Format Data | check_and_format_data |
Compare predicted and actual values for training and validation sets | compare_predicted_vs_actual |
Function to convert columns to numeric matrices | convert_to_numeric_matrices |
Function to convert data to TensorFlow tensors | convert_to_tensors |
Function to define early stopping callback | define_early_stopping |
Embed columns and create a new data frame | embed_columns |
Perform forecasting using the best model | forecast_best_model |
Function to initialize TensorFlow and enable eager execution | initialize_tensorflow |
Predict y values for the training and validation sets using the best LSTM model | predict_y_values |
Function to reshape input data for LSTM | reshape_for_lstm |
Split data into training and validation sets | split_data |
Time Series LSTM Hyperparameter Tuning | ts_lstm_x_tuning |