Package: tsLSTMx 0.1.0

tsLSTMx: Predict Time Series Using LSTM Model Including Exogenous Variable to Denote Zero Values

It is a versatile tool for predicting time series data using Long Short-Term Memory (LSTM) models. It is specifically designed to handle time series with an exogenous variable, allowing users to denote whether data was available for a particular period or not. The package encompasses various functionalities, including hyperparameter tuning, custom loss function support, model evaluation, and one-step-ahead forecasting. With an emphasis on ease of use and flexibility, it empowers users to explore, evaluate, and deploy LSTM models for accurate time series predictions and forecasting in diverse applications. More details can be found in Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.

Authors:Sandip Garai [aut, cre], Krishna Pada Sarkar [aut]

tsLSTMx_0.1.0.tar.gz
tsLSTMx_0.1.0.zip(r-4.5)tsLSTMx_0.1.0.zip(r-4.4)tsLSTMx_0.1.0.zip(r-4.3)
tsLSTMx_0.1.0.tgz(r-4.5-any)tsLSTMx_0.1.0.tgz(r-4.4-any)tsLSTMx_0.1.0.tgz(r-4.3-any)
tsLSTMx_0.1.0.tar.gz(r-4.5-noble)tsLSTMx_0.1.0.tar.gz(r-4.4-noble)
tsLSTMx_0.1.0.tgz(r-4.4-emscripten)tsLSTMx_0.1.0.tgz(r-4.3-emscripten)
tsLSTMx.pdf |tsLSTMx.html
tsLSTMx/json (API)

# Install 'tsLSTMx' in R:
install.packages('tsLSTMx', repos = c('https://sandipgarai.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 148 downloads 13 exports 34 dependencies

Last updated 1 years agofrom:9603efaaee. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 08 2025
R-4.5-winOKMar 08 2025
R-4.5-macOKMar 08 2025
R-4.5-linuxOKMar 08 2025
R-4.4-winOKMar 08 2025
R-4.4-macOKMar 08 2025
R-4.4-linuxOKMar 08 2025
R-4.3-winOKMar 08 2025
R-4.3-macOKMar 08 2025

Exports:best_model_on_validationcheck_and_format_datacompare_predicted_vs_actualconvert_to_numeric_matricesconvert_to_tensorsdefine_early_stoppingembed_columnsforecast_best_modelinitialize_tensorflowpredict_y_valuesreshape_for_lstmsplit_datats_lstm_x_tuning

Dependencies:AllMetricsbackportsbase64enccliconfiggenericsglueherejsonlitekeraslatticelifecyclemagrittrMatrixpngprocessxpsR6rappdirsRcppRcppTOMLreticulaterlangrprojrootrstudioapitensorflowtfautographtfrunstidyselectvctrswhiskerwithryamlzeallot