Package: AllMetrics 0.2.1

AllMetrics: Calculating Multiple Performance Metrics of a Prediction Model

Provides a function to calculate multiple performance metrics for actual and predicted values. In total eight metrics will be calculated for particular actual and predicted series. Helps to describe a Statistical model's performance in predicting a data. Also helps to compare various models' performance. The metrics are Root Mean Squared Error (RMSE), Relative Root Mean Squared Error (RRMSE), Mean absolute Error (MAE), Mean absolute percentage error (MAPE), Mean Absolute Scaled Error (MASE), Nash-Sutcliffe Efficiency (NSE), Willmott’s Index (WI), and Legates and McCabe Index (LME). Among them, first five are expected to be lesser whereas, the last three are greater the better. More details can be found from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202> and Garai et al. (2024) <doi:10.1007/s11063-024-11552-w>.

Authors:Dr. Sandip Garai [aut, cre]

AllMetrics_0.2.1.tar.gz
AllMetrics_0.2.1.zip(r-4.5)AllMetrics_0.2.1.zip(r-4.4)AllMetrics_0.2.1.zip(r-4.3)
AllMetrics_0.2.1.tgz(r-4.4-any)AllMetrics_0.2.1.tgz(r-4.3-any)
AllMetrics_0.2.1.tar.gz(r-4.5-noble)AllMetrics_0.2.1.tar.gz(r-4.4-noble)
AllMetrics_0.2.1.tgz(r-4.4-emscripten)AllMetrics_0.2.1.tgz(r-4.3-emscripten)
AllMetrics.pdf |AllMetrics.html
AllMetrics/json (API)

# Install 'AllMetrics' in R:
install.packages('AllMetrics', repos = c('https://sandipgarai.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.78 score 2 packages 400 downloads 1 exports 0 dependencies

Last updated 9 months agofrom:7083f7b0a9. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winOKNov 08 2024
R-4.5-linuxOKNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:all_metrics

Dependencies: